隐藏的马尔可夫链(HMC)和复发性神经网络(RNN)是预测时间序列的两个知名工具。即使这些解决方案是在不同的社区中独立开发的,但当被认为是概率结构时,它们具有一些相似之处。因此,在本文中,我们首先将HMC和RNN视为生成模型,然后将这两个结构嵌入了共同的生成统一模型(GUM)中。接下来,我们讨论了这些模型表达性的比较研究。为此,我们假设模型是线性和高斯。这些模型产生的概率分布以结构化协方差序列为特征,因此表达性降低到比较结构化协方差序列的集合,这使我们能够要求随机实现理论(SRT)。我们最终提供了可以通过口香糖,HMC或RNN实现给定协方差序列的条件。
translated by 谷歌翻译
Convolutional neural networks (CNNs) are currently among the most widely-used neural networks available and achieve state-of-the-art performance for many problems. While originally applied to computer vision tasks, CNNs work well with any data with a spatial relationship, besides images, and have been applied to different fields. However, recent works have highlighted how CNNs, like other deep learning models, are sensitive to noise injection which can jeopardise their performance. This paper quantifies the numerical uncertainty of the floating point arithmetic inaccuracies of the inference stage of DeepGOPlus, a CNN that predicts protein function, in order to determine its numerical stability. In addition, this paper investigates the possibility to use reduced-precision floating point formats for DeepGOPlus inference to reduce memory consumption and latency. This is achieved with Monte Carlo Arithmetic, a technique that experimentally quantifies floating point operation errors and VPREC, a tool that emulates results with customizable floating point precision formats. Focus is placed on the inference stage as it is the main deliverable of the DeepGOPlus model that will be used across environments and therefore most likely be subjected to the most amount of noise. Furthermore, studies have shown that the inference stage is the part of the model which is most disposed to being scaled down in terms of reduced precision. All in all, it has been found that the numerical uncertainty of the DeepGOPlus CNN is very low at its current numerical precision format, but the model cannot currently be reduced to a lower precision that might render it more lightweight.
translated by 谷歌翻译
自适应实例归一化(ADAIN)已成为样式注入的标准方法:通过通过缩放和迁移操作重新归一化功能,它发现在样式传输,图像生成和图像到图像转换中广泛使用。在这项工作中,我们提出了Adain的概括,该概括依赖于我们配音的美白和着色转化(WCT),我们将其申请在大型gan中申请样式注射。我们通过对Starganv2体系结构的实验来展示这种概括(尽管在概念上很简单,但在生成的图像的质量上都显着改善。
translated by 谷歌翻译
环绕视图相机是用于自动驾驶的主要传感器,用于近场感知。它是主要用于停车可视化和自动停车的商用车中最常用的传感器之一。四个带有190 {\ deg}视场覆盖车辆周围360 {\ deg}的鱼眼相机。由于其高径向失真,标准算法不容易扩展。以前,我们发布了第一个名为Woodscape的公共鱼眼环境视图数据集。在这项工作中,我们发布了环绕视图数据集的合成版本,涵盖了其许多弱点并扩展了它。首先,不可能获得像素光流和深度的地面真相。其次,为了采样不同的框架,木景没有同时注释的所有四个相机。但是,这意味着不能设计多相机算法以在新数据集中启用的鸟眼空间中获得统一的输出。我们在Carla模拟器中实现了环绕式鱼眼的几何预测,与木观的配置相匹配并创建了Synwoodscape。
translated by 谷歌翻译
机器学习容易受到对抗的示例 - 输入,旨在使模型表现不佳。但是,如果对逆势示例代表建模域中的现实输入,则尚不清楚。不同的域,如网络和网络钓鱼具有域制约束 - 在对手必须满足攻击方面必须满足要实现的攻击(除了任何对手特定的目标)之间的特征之间的复杂关系。在本文中,我们探讨了域限制如何限制对抗性能力以及对手如何适应创建现实(符合限制)示例的策略。在此,我们开发从数据学习域约束的技术,并展示如何将学习的约束集成到对抗性制作过程中。我们评估我们在网络入侵和网络钓鱼数据集中的方法的功效,并发现:(1)最多82%的对抗实例由最先进的制作算法产生的违规结构域约束,(2)域约束对对抗性鲁棒例子;强制约束产生模型精度的增加高达34%。我们不仅观察到对手必须改变投入以满足领域约束,但这些约束使得产生有效的对抗例子的产生远远挑战。
translated by 谷歌翻译